
Building EUROPA

Software Requirements1.
Building ThirdParty Libraries

Check out the ThirdParty code1.
Install Log4cxx2.
Install CPPUnit3.

2.

Building EUROPA
Check out the source code

Official Releases1.
The Bleeding Edge2.

1.

Configure your environment2.
Build a EUROPA distribution3.

3.

Advanced Build Configuration
Additional Arguments to Jam1.
Common Targets2.
Build Options3.
Configuring Build Libraries4.
Analyzing Code Coverage (Linux platform only)5.
Examples6.

4.

Software Requirements
To begin with, you will need the following software installed on your system:

 Jam 2.5 - An automated build system (replacement for make)•
 Java 1.5 - A platform independent programming language and runtime.•
 Doxygen - An automated documentation generator. (required only to generate API documentation)•

The following software is required and tested versions are provided in a ThirdParty? repository (see 'Building
ThirdParty Libraries' below for details).

 CPPUnit - A C++ unit testing framework (you may need to rerun ldconfig to get this library installed
properly)

•

 Log4cxx - A C++ logging package that emulates the popular Log4j system. Note that log4cxx requires the
Apache Runtime Library (called APR). For RHEL users, the most recent versions of log4cxx and APR
require RHEL 5 or better.

•

The following software is also required, but is likely already installed on your system:

 Subversion - version control system.•
 GCC 3.3+ - GNU Compiler Collection.•
 Perl - A general purpose scripting language, used for some utility scripts in PLASMA. (not strictly
required)

•

 SWIG 1.3.36+ - Tool that allows us to expose C++ interfaces in Java and other languages.
mac users : if you download it from the swig site, make sure you get swig, not macswig, which is a
very old version available from that site

♦

version 1.3.29+ will work for everything except one small bug (see #169)♦

•

 Cygwin - A POSIX environment for Microsoft Windows.•

Software Requirements 1

ftp://anonymous@ftp.perforce.com/jam/jam-2.5.zip
http://java.sun.com/javase/downloads/
http://www.stack.nl/~dimitri/doxygen/download.html#latestsrc
http://apps.sourceforge.net/mediawiki/cppunit/index.php?title=Main_Page
http://logging.apache.org/log4cxx/download.html
http://subversion.tigris.org/project_packages.html
http://gcc.gnu.org/mirrors.html
http://www.perl.com/download.csp#sourcecode
http://www.swig.org/
http://www.cygwin.com/setup.exe

The following software is included in Europa, but you may wish to install your own version or already have your
own version installed:

 ANT - The top-level build tool for Europa•

Building ThirdParty Libraries
This section describes how you can install the supported versions of Log4cxx and CPPUnit. Using the ThirdParty?
repository from Europa is optional if you already have these packages installed.

Check out the ThirdParty code

EUROPA's ThirdParty source code is kept on a subversion code repository.

svn co http://europa-pso.googlecode.com/svn/ThirdParty/trunk plasma.ThirdParty

Install Log4cxx

We have provided a perl script that automates the install of the log4cxx library, though you are free to run the script
manually (all it does is ./configure, make, sudo make install). Note that you will need to run the script as root. If
you want to change the default install directory (set by ./configure), then you will need to run the commands at the
command line.

> cd plasma.ThirdParty
> sudo makeLog4cxx

Install CPPUnit

We have provided a perl script that automates the install of the log4cxx library, though you are free to run the script
manually (all it does is ./configure, make, sudo make install). Note that you will need to run the script as root. If
you want to change the default install directory (set by ./configure), then you will need to run the commands at the
command line.

> cd plasma.ThirdParty
> sudo makeCppUnit

Building EUROPA

Check out the source code

EUROPA's source code is kept on a subversion code repository.

Windows Users:: Do NOT check out PlanWorks, as it is not supported, and confuses EUROPA compilation.

Building EUROPA 2

http://ant.apache.org/
http://subversion.tigris.org/
http://subversion.tigris.org/

Official Releases

To get an officially released version of EUROPA, run:

svn co http://europa-pso.googlecode.com/svn/PlanWorks/tags/<release_tag> PlanWorks
svn co http://europa-pso.googlecode.com/svn/PLASMA/tags/<release_tag> PLASMA

Tags for official EUROPA releases (click on the tag to see details) :

Tag Date
EUROPA-2.2 2009/05/22
EUROPA-2.1.2 2008/08/12
EUROPA-2.1.1 2008/01/11
EUROPA-2.1.0 2007/11/05

The Bleeding Edge

To get the most recent version of the code, run (PlanWorks contains the PlanWorks and PSUI visualization tools,
while PLASMA contains the core EUROPA software) :

svn co http://europa-pso.googlecode.com/svn/PlanWorks/trunk PlanWorks
svn co http://europa-pso.googlecode.com/svn/PLASMA/trunk PLASMA

Note : If you're a authorized to commit to the EUROPA repository, you must checkout your code using https
instead of http or you will not be able to commit. You'll be asked for you googlecode credentials before the
checkout operation can proceed. If you don't happen to know your password (which is automatically generated and
different from your gmail password), then you should sign into your gmail account and visit
 http://code.google.com/hosting. Then select your profile and click the settings tab.

Configure your environment

The following environment variables are needed to build and run EUROPA (shown here added to ~/.bashrc,
assuming that PLASMA was checked out in the $HOME/svn directory):

export PLASMA_HOME=$HOME/svn/PLASMA # PLASMA_HOME is only used to ease the definition of other paths.
export ANT_HOME=$PLASMA_HOME/ext/ant # EUROPA includes a version of Ant with all necessary extensions.
export PLANWORKS_HOME=$HOME/svn/PlanWorks # wherever you checked out PlanWorks

On Cygwin, the following two paths should be defined with Windows style paths without spaces.
export JAVA_HOME=/usr/java/jdk1.5.0_12 # the directory where you installed Java
export EUROPA_HOME=$PLASMA_HOME/dist/europa # where the results of the build are placed

export LD_LIBRARY_PATH=$EUROPA_HOME/lib:./build/lib:. # DYLD_LIBRARY_PATH on a Mac
export DYLD_BIND_AT_LAUNCH=YES # Only needed on Mac OS X

When you compile jam, you may have to move the 'jam0' executable to 'jam'. You may also need to add the 'jam'
,'ant' and 'swig' executables to your path:

export PATH=$PATH:$ANT_HOME/bin:$HOME/programs/jam:$PROG/swig-1.3.36

Finally, for reasons we can't fathom, you may need to add the following if you want to use PlanWorks:

Official Releases 3

http://code.google.com/hosting

export OSTYPE=$OSTYPE

To see if you have the necessary software requirements, run (note that you must be in the 'bin' directory):

% cd <path-to-root-PLASMA-directory>/bin
% checkreqs

Build a EUROPA distribution

To build EUROPA, simply run (Note that this will take a while):

% cd $PLASMA_HOME
% ant build zip-dist

the EUROPA distribution will be available at $PLASMA_HOME/dist/europa.zip, you can the take the distribution
and install it

If desired, Doxygen API documentation can be run by following the directions here.

Advanced Build Configuration

Additional Arguments to Jam

Arguments to the jam exec can be passed through the jam.args variable. This is useful to enable SMP support on
multiprocessor machines; for example:

 % ant -Djam.args="-j2"

will tell jam to use two shells for processing. Jam will take care of dependencies for the compilation. Warning -- do
not use this if you are debugging dependency issues!

Common Targets

Here are the most common ant targets to build/test EUROPA components (all are available in
$PLASMA_HOME/build.xml):

Target Description
build Builds all the EUROPA modules
test Runs all the regression tests
dist Gathers all the elements of a EUROPA distribution under $PLASMA_HOME/dist/europa
zip-dist Same as dist then puts the distribution directory in a zip file
TODO: document some of the jam targets as well?

Build Options

EUROPA can be built using a few variations. The variations and parameters of the build can be configured through
environment variables or parameters to jam. EUROPA supports building one or more "variants" at the same time.

Advanced Build Configuration 4

The valid variants are (see here for implementation details):

DEV - unoptimized, unprofiled, debug (all error detection on). The default option, but not necessarily the
best.

•

OPTIMIZED - optimized, unprofiled, no debug. Error detection is disabled to improve runtime
performance; compile times are somewhat slower.

•

PROFILE - unoptimized, profiled, no debug. Error detection is disabled.•
COVERAGE - compiles with the flags required by the gcov code coverage tool. See Analyzing Code
Coverage below for more information.

•

CUSTOM - special variant that examins some environment variables to set the compilation flags.•

For example, to build using optimized compiler settings :

% cd $PLASMA_HOME
% ant -Djam.variant=OPTIMIZED

The output files are named differently for each variant, which makes it possible to build different variants at the
same time. It is also not necessary to clean the tree when switching variants. Here are the naming patterns for each
of the main variants:

DEV = <filename>_g<ext>•
OPTIMIZED = <filename>_o<ext>•
PROFILE = <filename>_p<ext>•

The fourth variant, CUSTOM is a special variant that examines some environment variables to determine the
compilation flags. These environment variables are:

EUROPA_DEBUG - use debugging•
EUROPA_DEBUG_MESSAGE - enable DebugMsg•
EUROPA_OPTIMIZED - use optimization•
EUROPA_PROFILE - use profiling•
EUROPA_WARN - use additional warnings•

In the case of the CUSTOM variant, the five variables are used to construct the name by composition. E.g., the
OPTIMIZED variant is identical to the CUSTOM EUROPA_OPTIMIZED variant. See this file for details.

The default variant is DEV, which includes EUROPA_DEBUG_MESSAGE.

Configuring Build Libraries

The EUROPA build supports building modules as different kinds of libraries. The building of modules as different
kinds of libraries is also controlled through environment variables or parameters to jam. EUROPA supports
building 1 or more library kinds at the same time. The valid library kinds are:

STATIC - using static compile time linking (*.a)•
NONE - avoid using libraries (link *.o directly) (This option is no longer officially supported, although it
should still function)

•

SHARED - using shared compile time linking (*.so) (dyanic libraries on OS X)•
NONE - Compile without generating libraries at all, all code is linked into executables.•

Build Options 5

For example, to build without using libraries :

% cd $PLASMA_HOME
% ant -Djam.libraries=NONE

When building shared libraries, it is necessary to build using position independent code. As a
result, the object files are named differently in this case:

SHARED = <variant>_pic.o•
STATIC/NONE = <variant>.o•

Also, depending on which kind of libraries are used, the target executable names
are also different.

STATIC = <filename>.exe•
NONE = <filename>_no.exe•
SHARED = <filename>_rt.exe•

The default library kind is SHARED. The library kind NONE is only
recommended for situations where cyclic dependencies exist between modules.
The library kind SHARED is often the most space efficient. When running with
SHARED it is required to add the EUROPA shared library directory to your
library search path. The relevant variable depends on your platform, and the way to
set it depends on your shell. Here is an example for the sh and bash shells: %
LD_LIBRARY_PATH="$LD_LIBRARY_PATH":/home/me/PLASMA/lib %
export LD_LIBRARY_PATH where you should replace '/home/me' with the full
path to the directory containing your EUROPA checkout from SVN. For csh and
tcsh and similar shells: % setenv
LD_LIBRARY_PATH="$LD_LIBRARY_PATH":/home/me/PLASMA/lib

Analyzing Code Coverage (Linux platform only)

EUROPA's code coverage tool (based on gcov) is used to identify the percentage of the code base that is exercised
by the module tests. This is an important quality metric as the higher the percentage of the code base tested the
more likely it is that bugs will be detected.

Go to the PLASMA/bin directory and invoke the coverage script to generate the coverage data. The script will run
for approximatly 30 mins as it builds a coverage variant of the EUROPA system and runs all the module tests
before generating the gcov code coverage data. The script produces the following files in the PLASMA directory.

coverage-results.txt lists the percentage of each source file executed by Europa's system tests.•
A filename.cc.gcov or filename.hh.gcov file is provide for each source file in the system. It lists the code
within the file annotated with the number of times each line has been run. Mulitple pound signs (#) indicate
that a line was not executed.

•

*.bb, *.bbg, *.da are working files prouced by gcov. They are of no interest to the human reader.•

Examples

To build an optimized version with static libraries

Configuring Build Libraries 6

% cd $PLASMA_HOME
% ant -Djam.variant=OPTIMIZED -Djam.libraries=STATIC

To build a debug version with shared libraries

% cd $PLASMA_HOME
% ant -Djam.variant=DEV -Djam.libraries=SHARED

Examples 7

	tmpjFxPJjtracpdf

